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resolution and 5-year temporal resolution from 2010 to 2100. 
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Abstract 

Characterizing land use and land cover change (LUCC) is critical for understanding the 

interaction between human activities and global environmental changes, such as in 

biological diversity and the carbon cycle. Both natural cycles and human activities can be 

better examined with more accurate sources of land use data with higher spatial resolution. 

More importantly, it is crucial to consider spatial heterogeneity to simulate future changes 

in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM-CA) that 

combines a global change assessment model (GCAM) with cellular automata (CA) is 

proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 

1-km spatial resolution and 5-year temporal resolution from 2010 to 2100. The GCAM 

model is employed to predict the land use and land cover area demands for 283 world 

regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 

agro-ecological zones (AEZs). The spatialization rules of CA is trained separately for each 

world region to distinguish global land use and land cover types. The different spatialization 

rules and trends in land use and land cover demand for each of the 283 regions reflect the 

spatial heterogeneity in the GCAM-CA model. We implement and validate the model for the 

simulation from 2000 to 2010. Next, model is used to simulate three future scenarios, REF, 

G26 and G45, demonstrating that the GCAM-CA model is effective for future global-scale 

simulation of LUCCs. GCAM-CA is freely available at the open geographic modeling and 

simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM-CA.jsp). 

Keywords: land use and land cover change (LUCC); global change assessment model (GCAM); 

cellular automata (CA); spatial sequential modeling 
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1 Introduction 

Land use and land cover change (LUCC) is critical for understanding the interaction between 

human activities and global environmental changes in biological diversity, the carbon cycle, 

and greenhouse gas emissions (Moss et al., 2010; Hurtt et al., 2011; West et al., 2014). LUCC 

modeling has proven to be an important tool for analyzing the driving mechanism and 

spatial distribution of LUCCs in the past and/or possible future (Verburg et al., 2011; Wu et 

al., 2013; Alexander et al., 2018). LUCC models generally use complex processes to represent 

land use and land cover on a spatial grid (Verburg et al., 2010; Popp et al., 2017). 

Global-scale LUCC models are now considered to be crucial inputs for various assessments of 

anthropogenic environmental change, including climate change, biological diversity and 

mitigation (Meiyappan et al., 2014; Pelletier et al., 2015; Sleeter et al., 2017; Hirsch et al., 

2018; Hanaček et al., 2018; Wolffa et al., 2018). 

Despite the fact that global-scale LUCC modeling is required in many situations, few 

global LUCC models exist due to their complexity (Meiyappan et al., 2014). Originally, most 

global assessment models involved global-scale land use demand predictions, such as the 

future agriculture resource model (FARM), Asia-pacific integrated model (AIM), modular 

applied general equilibrium tool (MAGNET), the parsimonious land use model (PLUM), and 

the global change assessment model (GCAM). FARM model can allocate land resources by 

market-clearing prices among competing uses for 13 regions, but not match to specific 

geographic locations (Darwin et al., 1995; Sands and Leimbach, 2003). AIM/CGE2.0 and 

MAGNET model are computable general equilibrium models, which can predict land-use 
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demands for 17 and 26 regions, respectively (Fujimori et al., 2012; Woltjer et al., 2014). 

PLUM is a simple conceptual model of the socio-economic processes that determine global 

agricultural land-use change for 157 countries (Engström et al., 2016). GCAM is an integrated, 

multi-sector model that explores both human and Earth system dynamics for 283 regions 

(Edmonds et al., 1994). 

Representation of land use and land cover at a more detailed spatial resolution is 

always identified as a critical improvement in global-scale LUCC modeling (Letourneau et al., 

2012; Li et al., 2017). For decades, efforts have been made to develop global-scale LUCC 

models with more detailed spatial resolution. Some models can simulate global-scale land 

use change with a spatial resolution of 0.5 degree (approximately 55km at the equator), 

such as the integrated model to assess the greenhouse effect (IMAGE) (Kyle et al., 2011; 

Doelmana et al., 2018), model of agricultural production and its impacts on the environmen 

(MAgPIE) (Popp et al., 2014) and cropland and pastureland model (CAPS) (Meiyappan et al., 

2014). In addition, there are some models can simulate global-scale land use change with a 

fine resolution of 5 arc-minutes (approximately 10 km at the equator), including LUSs model 

(Letourneau et al., 2012), GLOBIOM model (Havlík et al., 2014), CLUMondo model (Van & 

Verburg, 2014), and LandSHIFT model (Schaldach et al., 2011). This 10-km resolution, 

however, still produces major distortions in land use patterns because many small urban 

areas are merged into other land use classes (Li et al., 2017).  

Recently, studies have demonstrated that cellular automata (CA) are suitable for the 

spatial allocation of land use and land cover at a high spatial resolution (Almeida et al., 2008; 
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Cao et al., 2015). The distinguishing characteristic of CA is that large-scale, complex spatial 

patterns emerge from its simple small-scale transition rules, which is consistent with 

complex theories (Clarke et al., 1998; Batty & Torrens, 2005). For decades, CA models have 

been used to simulate LUCCs at various local or regional scales (Li and Yeh, 2002; Dietzel and 

Clarke, 2007; Liu et al., 2008; Torrens et al., 2013; Lin et al., 2014), such as in the 

regional-scale GEOMOD model (Estoque and Murayama, 2012), the continental-scale 

DynaCLUE model (Verburg and Overmars, 2009), and the continental- to global-scale 

LandSHIFT model (Schaldach et al., 2011). CA models can also be used to simulate 

global-scale LUCCs based on land area demand constraints predicted by global assessment 

models. For example, the FLUS model can simulate global-scale LUCCs by integrating CA and 

the IMAGE model (Li et al., 2017; Liu et al., 2017; Dong et al., 2018), predicting land use 

demands for seventeen world regions. The FLUS model can cope with large-scale global 

LUCC simulations at 1-km spatial resolution. This increase in spatial resolution greatly 

improves the spatial representation of land use and land cover in global-scale LUCC 

modeling (Li et al., 2017). 

However, refinements are required to properly represent the spatial heterogeneity of 

land use and land cover in global-scale LUCC models. The spatial heterogeneity of land use 

and land cover plays an important role in global impact assessments (Meiyappan et al., 2014; 

Li et al., 2017). For example, regions may have the same climate zone, moisture conditions, 

soil type and landforms, but have different spatial characteristics of land use and land cover 

in different countries. Similarly, an entire country may share the same geopolitical and 

socioeconomic conditions, but still has significant spatial heterogeneity in land use and land 
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cover due to variations in climate, moisture, soil, or landforms. 

Among the global assessment models, the spatial heterogeneity of land use and land 

cover can be reflected in the GCAM model, which predicts land use and land cover demands 

for 283 world regions by intersecting 18 agro-ecological zones (AEZs) with temperature 

bands, humidity, and 32 geopolitical and socioeconomic regions (Page et al., 2016; Calvin et 

al., 2017). The aim of this study is to present a global-scale LUCC model (hereinafter referred 

to as GCAM-CA) by integrating GCAM and CA, which allows us to sequentially spatialize 

global land use and land cover changes with a 1-km spatial resolution and a 5-year temporal 

resolution from 2010 to 2100. Both natural cycles and human activities are expected to 

result in spatially heterogeneous land use and land cover within the 283 world regions in the 

global-scale LUCC model. The GCAM-CA model attempts to use publicly available land use 

and land cover products to feed most of the global environmental change assessments.  

The remainder of this paper is organized into following sections. Section 2 describes the 

basic structure of the GCAM-CA model, then details the specific methods used to predict 

land use demand and spatialize land use using CA. Section 3 presents the model application, 

validation, and scenario simulation. Section 4 conducts model comparison and discussion. 

Finally, section 5 draws conclusions and considers future areas of research. 

2 Methods 

2.1 The basic idea of GCAM-CA 

As a global integrated assessment model, GCAM expresses the behavior and interactions 

among five systems: energy, economy, agriculture and land use, water, and climate 
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(downloaded from: http://www.globalchange.umd.edu/models/gcam/) (Shi et al., 2017). 

Studies have shown that the GCAM model is useful for exploring the interactions between 

land use and land cover, social economy, and climate change, and these factors are 

considered to be suitable for predicting the land use and land cover demands of each AEZ 

(Wu et al., 2013; Sands and Leimbach, 2003).  

In this paper, we constructed the GCAM-CA model by integrating the GCAM model and 

CA for the spatialization of global land use and land cover changes. The structure of the 

GCAM-CA model is shown in Figure 1. The GCAM-CA model can be divided into two main 

parts: (1) prediction of land use demand by the GCAM model for all world regions; and (2) 

the spatialization of land use and land cover by the CA model. The transition rules of CA are 

determined using artificial neural network (ANN) methods. Different ANNs are created from 

training data, after which the well-trained networks are used to estimate the initial 

probabilities of land conversion on a specific grid cell. The final land use type is confirmed by 

comparison to the neighborhood influence, conversion weight matrix and other expert 

experiences.     

2.2 Land use demand prediction using GCAM 

The agriculture and land use components of the GCAM model consider 283 world regions, 

which are based on the intersection of two region types: the 18 AEZs and 32 geopolitical and 

socioeconomic regions (Page et al., 2016; Calvin et al., 2017). The 18 AEZs reflect the natural 

ecosystems and agricultural activities across the global land area, , accounting for the 

influence of climate on vegetation and crop productivity (Kyle et al., 2011; Lee, 2005; Chen 
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et al., 2017). Lands located in a specific AEZ have similar or homogenous soil, landforms and 

climatic characteristics. The 32 geopolitical and socioeconomic regions  represent 

economic conditions such as industrial production, energy use, trade, and natural resources. 

In the GCAM model, the 18 AEZs are intersected with the 32 geopolitical regions to generate 

283 unique spatial regions, as shown in Figure 2.  

   In the AgLU component of GCAM, changes in the 283 world regions are modeled based 

on a range of drivers, including population growth, income, technology improvements, crop 

productivity, labor costs, energy demand and environmental policies(Vittorio et al., 2016; 

Snyder et al., 2018). As an integrated assessment model, the land use modeling in GCAM 

considers comprehensive land use types. Each of the 283 world regions is divided into one of 

several land categories based on land use and land cover (Kyle et al., 2011). These land use 

and land cover categories include commercial use types (e.g., bioenergy crops, commercial 

pasture, cropland, and forest products), as well as non-commercial types (e.g., grassland, 

shrubland, and non-commercial forestland). Tundra, desert, and built-up land are considered 

as unavailable for any other uses.  

 The land allocation methodology used in AgLU includes a market price mechanism, 

which is defined for crops, animal products and agricultural products (Wise et al., 2014). The 

land is allocated across agricultural activities to maximize economic returns to the land 

owners in a region, which is calculated as the revenue minus the production cost, as follows: 

, , , , , ,( )i l p i l p i l i lr y P G     ,  i= crops, biomass, pasture        (1) 

where i, l and p indicate the land use type index, region index and AEZ index, 
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respectively; 
, ,i l pr  and 

, ,i l py represent the economic return and the yield corresponding 

to the land use type index i, the region index l and the AEZ index p, respectively; and
,i lP  and 

,i lG denote the market price of a product and the non-land cost corresponding to the land 

use type index i and region index l, respectively. 

For the economic return of forest products, an extra process of earnings conversion 

from the future to the present is required due to the time delay between planting and 

harvest. The process is as follows: 

, ,, , , ,45
×( )

(1 ) 1
i l i li l p i l p

r
r y P G

r
  

 
, i= forest              (2) 

where r represents the interest rate and , ,i l mP  is the price per cubic meter of forest 

products over three model time periods (45 years) into the future.  

A simplified approach is used to allocate the land area in each AEZ with the aim of 

maximizing profits. Based on the assumptions of the yield distribution function, the share of 

land use allocated to a given land use type 𝑖 is as follows: 

,

,

, ,

0
i l

i l

i l pp

r
S

r













 


，                              (3) 

where Si,l and 
,i lr  denote the share of land use and the average economic return 

corresponding to the land use type index i and the region index l, respectively; 𝜆 is a 

distribution parameter of economic return; and the denominator is the sum of all possible 

uses for the land.  

The land area of a specific type is calculated based on the total land area and the share 
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of land use, as follows: 

, ,i l i l lLanduse S Totalland                       (4) 

where 
,i lLanduse  represents the land area allocated to land use type 𝑖; 

,i lS  denotes the 

share of allocated land use type 𝑖; and 
lTotalland  is the total land area of region 𝑙. 

2.3 Spatialization of land use and land cover types using CA 

2.3.1 Artificial neural networks (ANNs) 

ANNs are nonlinear statistical modeling tools based on biological neural networks. In the 

ANN approach, the complex relationships or patterns between inputs and outputs are 

identified through a number of learning-recall iterations (Li and Yeh, 2002; Huang et al., 

2018). ANNs have several advantages; most importantly, they can learn from a large number 

of observational datasets and deliver good performance (Almeida et al., 2008; Omrani et al., 

2017).  

An ANN with multiple neurons consists of an input layer, none, one or more hidden 

layers, and an output layer. The input layer contains a group of neurons that are responsible 

for accepting data imported to the network, such as gross domestic product (GDP), 

population, temperature, precipitation, and digital elevation model (DEM) data. This concept 

can be mathematically expressed as follows: 

1 2[ , ,...., ]T

nX x x x                            (5) 

where xi denotes the i-th neuron of the input layer. In the hidden layer, the signal received by 

the j-th neuron is calculated as follows:  
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,( , ) ( , )j i j i

i

net p t w x p t                          (6) 

where p and t are the grid cell and training time, respectively; netj(p, t) is a propagation 

function that computes the signal of the j-th neuron in the hidden layer; xi (p, t) is the 

variable i corresponding to input neuron i; and wi,j represents the adaptive weight between 

the i-th neuron of the input layer and the j-th neuron in the hidden layer. The number of 

neurons in the hidden layer is determined according to Kolmogorov´s theorem (Ismailov, 

2014). The sigmoid function, viewed as an effective activation function, is selected to 

determine the connection between hidden and output layers. The formula is as follows: 

( , )

1
( ( , ))

1 j
j net p t

sigmoid net p t
e





                   (7) 

The output layer represents the probability that a current cell would be allocated to any 

given land use and land cover type. The probability is calculated as follows: 

, , ( , )

1
( , , ) ( ( , ))

1 j
j k j j k net p tj

j

P p k t w sigmoid net p t w
e


   


          (8) 

where P (p, k, t) denotes the initial probability that the grid cell p would be identified as the 

k-th land use and land cover type at training time t; and wj,k represents the adaptive weight 

between the j-th neuron of the hidden layer and the k-th neuron of the output layer. The 

training datasets are extracted to train and construct the ANN model, and two adaptive 

weights wi,j and wj,k are calibrated during the process of training the ANN model.  

2.3.2 Conversion weight matrix  

The conversion weight matrix of different land types, which indicates the possibility of 
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conversion between two land use types, is also another important factor that affects land 

use spatialization. In this study, the conversion weight matrix reflects the probability that the 

current land use type would be converted to the target land use type in a specific world 

region, it is calculated from land use data in 2000 and 2010.. Thus, the conversion weight 

matrices for the 283 world spatial regions differ during the process of land use spatialization.  

At each 5-year interval, calculations are performed to allocate different land use and 

land cover types within a specific world region. The conversion weight matrix for all types of 

land use varies over time (in Table 1). Thus, the conversion weight matrix can be 

conceptualized as reflecting the conversion costs of the individual use types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The land use codes 10, 20, …, 100 are defined in Table 2.  

2.3.3 Combined probability 

The combined probability that a specific cell will be covered by a specific land use type is 

calculated by integrating the initial probability estimated by ANN, the neighborhood effect, 

the conversion weight matrix, and the conditional constraints. The equation is as follows: 

, , ,

t t t

i k i k i k c k consCP P con P r                       (9) 

Table 1. Conversion weight matrix between 10 types of land from 2000 to 2010 (world region 223) 

2000    2010 10 20 30 40 50 60 70 80 90 100 

10 1.00  0.08  0.65  0.20  0.03  0.01  0.00  0.01  0.01  0.00  

20 0.01  1.00  0.27  0.42  0.02  0.02  0.24  0.00  0.02  0.00  

30 0.15  0.30  1.00  0.47  0.02  0.01  0.00  0.01  0.05  0.00  

40 0.04  0.42  0.44  1.00  0.01  0.01  0.00  0.01  0.07  0.00  

50 0.08  0.28  0.19  0.20  1.00  0.12  0.13  0.01  0.01  0.00  

60 0.01  0.11  0.06  0.06  0.05  1.00  0.70  0.00  0.01  0.00  

70 0.00  0.41  0.00  0.00  0.02  0.25  1.00  0.00  0.00  0.32  

80 0.14  0.17  0.25  0.31  0.02  0.02  0.06  1.00  0.03  0.00  

90 0.02  0.13  0.38  0.45  0.01  0.01  0.00  0.00  1.00  0.01  

100 0.00  0.00  0.01  0.01  0.00  0.00  0.97  0.00  0.01  1.00  
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where 
,

t

i kCP  denotes the combined probability that a grid cell i would be allocated to land 

use type k at iteration time t; 
,

t

i kP  is the initial conversion probability estimated by the ANN 

model; 
,

t

i k  represents the influence of the neighborhood condition, which is calculated 

dynamically during the iterations; and 
c kcon 

 is the conversion weight matrix from land 

use type c to land use type k. 
consP  is the conditional constraints of the transition rules in 

the GCAM-CA model and r is a random variable ranging from 0 to 1. After the model begins 

running, a grid cell is allocated to the land use type with the highest combined probability. 

 The workflow for the spatialization of global land use and land cover from 2010 to 2100 

for the 283 world regions under different scenarios is shown in Figure 3. The land use 

demand calculated by GCAM is used to determine whether the next iteration of land use 

spatialization needs to be performed. When the total area does not meet the requirements 

of the GCAM model, the process of land use spatialization is continued. The land use type is 

determined by the combined probability during the process of land use spatialization. The 

execution of land use spatialization is repeated until the total areas of all land use types 

reach the land use demands predicted by the GCAM model. 

2.4 Coupling between GCAM and CA 

In the GCAM-CA model, the GCAM model predicts the land use demands in the 283 world 

regions at 5-year intervals according to changes in climate, socioeconomic conditions, 

historical land use and technological progress. The land use demand predictions of the 283 

world regions over time are used as the constraint conditions of land use for spatializing the 

land use and land cover types in the CA model. Additionally, the GCAM model also outputs 
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GDP and population data, which are used to calibrate the predicted demand of the frozen 

(unchanged) urban land area in the GCAM model output. Multiple regression methods have 

proven effective for calibrating the urban demand for GCAM (Dong et al., 2018). The GDP 

and population data series from 2010 to 2100 are also used as input spatial variables for the 

CA model. In addition, the global land use and land cover data in the CA model is coupled to 

the GCAM model and used to calibrate the parameter settings, ensuring consistency 

between the land use area demand predicted by the GCAM model and the observed land 

use area in the CA model.  

GlobaLand30 (GLC30) is used as the initial land use data in the CA model. This dataset is 

described in section 3.1. Because of the inconsistency in land use classes between GCAM 

and GLC30, a classification scheme is required to make the land use classes compatible for 

simulating and validating the GCAM-CA model. Table 2 lists different classification schemes, 

including GLC30, GCAM, IMAGE and FLUS. 

Table 2. Classification schemes for GLC30, GCAM, IMAGE and FLUS 

This study/GLC30 GCAM IMAGE FLUS 

Cultivated land (10) 
Crop 
Biomass 
Other arable land 

Agricultural land Farmland 

Forest (20) 
Managed forest 

Unmanaged forest 

Biofuels 
Boreal forest 
Carbon plantations 
Cool conifer forest 
Regrowth forest abandonment 
Regrowth forest timber 
Temperate deciduous forest 
Temperate mixed forest 
Tropical forest 
Tropical woodland 
Warm mixed forest 

Forest 

Shrubland (40) Shrubland Scrubland 

Grassland (30) 
Grassland 
Pasture 
Unmanaged pasture 

Extensive grassland 
Grassland-steppe 
Savanna 

Grassland 

Wetland (50) None None 
Water 

Water bodies (60) None None 

Urban land (80) Urban land None Urban 

Bare land (90) Rock  

Ice  

Desert 

Ice 

Tundra 

Hot desert 
Barren 

Permanent snow and ice 

(100) 

Tundra (70) Tundra Wooded tundra 
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3 Model application and results 

The GCAM-CA model introduced in this study can be implemented using the open 

geographic modeling and simulation platform (OpenGMS, 

http://geomodeling.njnu.edu.cn/GCAM-CA.jsp). Thus, the model can be employed by users 

in multiple disciplines to solve complex geographic problems and conduct integrated 

simulations. In the following section, we use the GCAM-CA model to spatialize the land use 

and land cover area demand in the integrated assessment framework of GCAM at a 1-km 

resolution for the period from 2010 to 2100. The global spatialization product for land use 

prediction in 2050 under the REF scenario is freely available also at the OpenGMS platform. 

3.1 Data and spatial variables 

GLC30 (http://www.globeland30.org/GLC30Download/) has 10 classes and a resolution of 

30 meters for the years 2000 and 2010. These data are used as the initial two periods of 

LUCC maps for calibration of the GCAM-CA model. GLC30 products include land use and land 

cover between 80° N and 80° S. The images utilized for classification by GLC30 include TM5 

and ETM+ data from the Landsat satellite and multispectral images from the Chinese HJ-1 

environmental satellite. The original resolution of 30 meters was first downgraded to 1 km 

to create the initial land use data for the CA model. The results from GCAM modeling have 

been verified by previous studies (Zhou et al., 2013, 2018a, 2018b). In 2010, the global land 

use demand of 126,990 thousand km2 predicted by GCAM is consistent with the total global 

land use area of 128,185 thousand km2 reflected in the GLC30 product (excluding wetlands 

and water bodies). 
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Global LUCCs are affected by both anthropogenic and natural drivers (Alexander et al., 

2015). In this study, twelve spatial variables (listed in Table 3) are assumed to represent the 

driving forces of land use change, as commonly used in the global LUCC simulation models 

(Letourneau et al., 2012; van Asselen and Verburg, 2013; Li et al., 2017). During the 

experiment, all spatial variables were resampled to the same resolution 1-km in the same 

projection (World_Goode_Homolosine_Land). The training samples were extracted using a 

stratified random sampling method to distribute the ten land use classes in the 283 world 

regions. The training samples account for five percent of the entire global dataset. In total, 

6,792,283 samples were collected to train and validate the neural network used to identify 

the land use and land cover types during the process of spatialization in the GCAM-CA 

model. Table 3. Spatial variables for training transition rules in GCAM-CA model 

Data Year Resolution Source 

Population 

GDP 

2010 

2010 

0.5′ 

1° 

Gridded Population of the World (GPW) 

Global Gridded Geographically Based Economic Data 

(G-Econ) 

distance to road 

distance to city 

2010 

2014 

1km 

1km 

Global Roads Open Access Data Set 

10m-cultural-vectors 

DEM 
2000 0.5′ 

Global 30 Arc-Second Elevation (GTOPO30) 

Slope Retrieved from DEM 

Silt content 

Clay content 

pH 

Sand content 

2008 1km Harmonized World Soil Database 

Temperature 
1970-2000 0.5′ WorldClim version 1.4(http://worldclim.org) 

Precipitation 

A three-layer Multilayer Perceptron (MLP), including an input layer, one hidden layer 

and an output layer, was utilized to obtain the spatialization rules for identifying the land use 

and land cover types. The twelve spatial variables and the land use type in 2000 were set as 

the input layer of MLP for each world region; next, the land use type in 2010 was set as the 

output layer. To estimate the probability (from 0 to 1), a logistic sigmoid function was utilized 

in the activation function of the MLP model. Stochastic gradient descent was chosen as the 

solution for weight optimization. If the loss or score did not improve by at least 0.001, 

convergence was considered to have been reached and training was halted. 
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3.2 Model implementation and validation 

The GCAM-CA model was implemented in Python and can be run on OpenGMS. The model 

can compute one of the 283 world regions or the entire global region at a time. To validate 

the GCAM-CA model, we used the model to simulate changes from 2000 to 2010 and 

compared the simulated results with the observed GLC30 land use data in 2010. Figure 4 

shows the result for 2010 simulated by the GCAM-CA model. 

 

A large number of regions maintained the same land use and land cover type from 

2000 to 2010, which leads to high consistency values based on the number of the cells with 

consistent land use types per grid cell (10×10 km2). The Figure of Merit index (FoM), the 

ratio of the correct predicted change to the union of the observed and the predicted change, 

is considered suitable for assessing the accuracy of simulated changes (Pontius, 2008; Li et 

al., 2017). Therefore, we also used the FoM index to validate the global LUCC simulation 

from 2000 to 2010. The formula is as follows: 

B
FoM

A B C D


  
                       (10)              

where A denotes the total number of observed changed cells that are predicted to be 

unchanged cells; D denotes the total number of observed unchanged land use cells 

simulated as changed cells; and B and C are the total number of observed changed cells that 

are predicted to be changed cells with correct and incorrect land use types, respectively. 

Figure 5 shows the spatial distribution of FoM values in the 283 regions for the 2000 to 
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2010 global land use simulation made using the GCAM-CA model. The FoM values of the 283 

regions range from 10 to 46%, which is similar to the results of other simulation models. For 

instance, the FoM values of the FLUS model for global land use simulation range from 10 to 

29% (Li et al., 2017). Figure 5 highlights the spatial heterogeneity of FoM values in different 

regions. The areas with greater human activity and complex LUCCs tend to have lower FoM 

values, which are indicated by pink and light purple colors in Figure 5. Conversely, areas with 

less human activity and LUCCs, such as the Sahara Desert, tend to have higher FoM values, 

which are shown in orange and brown colors in Figure 5.  

3.3 Scenario simulation from 2010 to 2100 

A scenario-based LUCC simulation can help assess potential land use change in an uncertain 

future (Sohl et al., 2012; Li et al., 2017). In this study, the GCAM model outputs global land 

use area for the 283 world regions under three policy scenarios, REF, G26 and G45. REF is 

the reference scenario, which assumes no changes in climate policy but considers factors 

such as technological progress. G26 and G45 are selected from the representative 

concentration pathway (RCP) scenarios from 2005 to 2100 (Kawase et al., 2011; Vuuren et al., 

2011). The G26 and G45 scenarios have the same population and income drivers as the 

GCAM reference scenario, but apply greenhouse gas emission valuation policies. G45 

stabilizes atmospheric radiative forcing at 4.5 W m-2 in 2100 and temperature changes within 

3ºC; this scenario is widely accepted as likely. G26 stabilizes radiative forcing at 2.6 W m-2 in 

the year 2100 and assumes that value is never exceeded; it caps the global average 

temperature rise at 2ºC. This scenario represents a radical reduction in radiative forcing. At 
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present, the G26 scenario is considered difficult to achieve. 

In the GCAM model, non-arable lands including water bodies and wetlands are not 

tracked; desert, tundra, and urban areas are tracked but considered to be fixed. The series of 

urban area predictions from 2015 to 2100 are revised according to the population and GDP 

data obtained from the GCAM model output, although the proportion of urban land area 

remains at approximately 1%. The areas of the four major LUCC classes, including cultivated 

land, forest, grassland and shrubland, are predicted for the period from 2010 to 2100 under 

the three policy scenarios in the GCAM model (Figure 6). Cultivated land is a major land use 

that affects food production and ecological systems. The area of cultivated land increases 

from 2010 to 2100 in all three scenarios, as shown in Figure 6(a). In contrast, the areas of 

forest, grassland and shrubland decrease at a global scale, as shown in Figures 6(b)-(d).  

As shown in Figure 6, the changes in area of the four major LUCC classes are smallest 

under the REF scenario, largest for the G26 scenario, and intermediate for the G45 scenario. 

The area predictions for the different scenarios verify the assumptions of each scenario: in 

the G26 scenario, the amount of human-used land (e.g., cultivated land) should be 

maximized, which is generally true; in the REF scenario, where no climate policy 

interventions take place, the amount of human-used land should be minimized and natural 

areas (e.g., forest, grassland and shrubland) protected, which generally occurs. The scenario 

simulations can help estimate future global LUCC, especially in the face of uncertainty (Hurtt 

et al., 2011). 

Land use dynamics are represented by the percentages of land use and land cover 
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changes, which are calculated by counting up the total number of changes between different 

land use types per grid cell (10×10 km2). Four typical regions are selected to illustrate land 

use patterns at a finer resolution, because patterns at a global scale are difficult to show 

explicitly. The change in the percentages of four major land use types in four typical regions 

are shown in Figure 7.  

Figure 7(a) shows the percentage change in cultivated land of a typical region in eastern 

Asia, where there are large tracts of cultivated land. Among the three scenarios, there are 

greater increases in agricultural land from 2010 to 2050 under the G26 and G45 scenarios 

than for the REF scenario. Figure 7(b) depicts a typical region with dense forest in India. 

Greater decreases in forest occur under the G26 and REF than for the G45 scenario from 

2010 to 2050. Figure 7(c) depicts a region in southern Africa with a large amount of 

grassland. There are slight reductions in grassland area under all three scenarios, though the 

reductions under the G26 and G45 scenarios are larger than for the REF scenario. Figure 7(d) 

shows reductions in shrubland in South America under all three scenarios, with the greatest 

changes occurring in the G26 scenario. Overall, changes in the four major land use types are 

greatest under the G26 scenario, least for the REF scenario, and intermediate for the G45 

scenario. 

4 Comparison and discussion 

 The IMAGE and FLUS models can provide global land use simulations at a fine resolution, 

and both models are available for public use. In this study, we focus on verifying whether the 

GCAM-CA simulations are consistent with those generated by the FLUS model at a 1-km 

spatial resolution. The GCAM-CA products under the REF scenario are compared with the 
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FLUS products under scenario A1B, both in 2050 (in Table 5). The GCAM-CA model contains 

six of the same land use types as the FLUS model (water, forest, grassland, farmland, urban 

areas, and barren areas) and four land use types that are not included in the FLUS model 

(shrubland, wetland, tundra and areas with permanent snow and ice). The areas with the six 

land use types that are consistent between models are examined for inter-model 

consistency. 

 

Table 4. Consistency between the products generated by GCAM-CA and FLUS in 2050 

GCAM-CA     

Flus 
Water Forest Grassland Farmland Urban Barren 

Water 0.639 0.127 0.135 0.093 0.436 0.008 

Forest 0.075 0.563 0.062 0.139 0.064 0.004 

Grassland 0.202 0.221 0.487 0.231 0.096 0.085 

Farmland 0.001 0.007 0.001 0.363 0.004 0.001 

Urban 0.030 0.004 0.004 0.009 0.362 0.002 

Barren 0.053 0.078 0.311 0.165 0.038 0.900 

Total accuracy 0.61 

Kappa 0.49 

Table 4 shows the percent consistency in 2050 for each of the six comparable land use 

types between the products generated by GCAM-CA and FLUS. In total, 63.9% of the water 

area in GCAM-CA is also classified as water in FLUS. The percent consistency of forest, 

grassland, farmland, urban and barren areas is 56.3%, 48.7%, 36.3%, 36.2% and 90.0%, 

respectively. The total accuracy and kappa values are 0.61 and 0.49, respectively, which 

indicate that the two results are generally consistent. However, there is a number of major 

differences between the modeling results. For example, 22.1% of forest areas in GCAM-CA 

are simulated as grassland in FLUS and 31.1% of grassland areas are simulated as barren. 

There are similar inconsistencies between farmland and grassland in the GCAM-CA and FLUS 
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simulations. 

    In the GCAM-CA model, the different spatialization rules and different land use and 

land cover demand predictions for the 283 world regions reflect the spatial heterogeneity 

accounted for by the model. To properly represent the spatial heterogeneity of the land use 

and land cover changes, a more detailed classification scheme of land use and land cover is 

required. Data sources with a higher spatial resolution can greatly reduce confusion 

between land use and land cover classes and can help better express land use information. 

5 Conclusion 

In this study, we developed GCAM-CA, is available for public use. This model is a global-scale 

LUCC model that sequentially spatializes land use and land cover with a 1-km spatial 

resolution and a 5-year temporal resolution from 2010 to 2100 under three policy scenarios 

of REF, G45 and G26. The CA methodology was applied to spatialize global land use and land 

cover types based on the constraints of land use area demand predicted by the GCAM 

model for the 283 spatial regions over the global. The spatialization rules in the CA process 

and the LUCC trends in the GCAM model account for the spatial heterogeneity in land use 

and land cover. The results of FoM show that calculating the spatialization in this partitioned 

manner can improve the accuracy of the simulation results. Three policy scenarios of REF, 

G45 and G26, were used in the GCAM framework to assess global LUCC changes under 

various possible futures. The GCAM model simulates GDP and population for every 5-year 

interval from 2010 to 2100. These outputs are used to revise the demand predictions for 

urban lands in the GCAM model. Additionally, these outputs are used as spatial variables, so 

that GDP and population change dynamically during the GCAM-CA model simulations over 
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time. 

In future research, global LUCC products with higher spatial resolution and accuracy 

may be possible. Although the GLC30 products used in this study have up to 30-m resolution, 

most of the spatial variable datasets that are available for public download have a maximum 

resolution of only 1 km, so spatialization can only be executed at a 1-km resolution. And all 

datasets used in the GCAM-CA model are converted to the Goode Homolosine 

projection(land), which is a pseudo-cylindrical, equal-area, composite projection often used 

for world maps. While this projection can minimize area errors at high latitudes, errors will 

still be present. The GCAM-CA model may be further improved by executing it on a sphere, 

which can help reduce area errors at high latitudes.  
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Figure 1. Basic framework of the GCAM-CA model. 
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Figure 2. Global spatial distribution of 283 world regions (data source: 

http://www.globalchange.umd.edu/gcam). 
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Figure 3. Workflow of the CA spatialization.  
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Figure 4. GCAM-CA simulation results for 2010. 
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Figure 5. Spatial distribution of FoM values for the 283 world regions for the 2010 GCAM-CA 

simulation results. 
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Figure 6. Simulations of the four major LUCC classes under all three scenarios in the GCAM 

model. 
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(a) Change percentage of cultivated land in a subregion in eastern of Asia  

 

(b) Change percentage of forest in a subregion in western of Asia 
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(c) Change percentage of grassland in a subregion in south of Africa 

 

 (d) Change percentage of shrubland in a subregion in South America 

 

Figure 7. Percentage change in major land use types in four typical regions for the three 

scenarios from 2010 to 2050. 
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